BUDDHA INSTITUTE OF TECHNOLOGY, GIDA, GORAKHPUR
 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING CT-1 (2 ${ }^{\text {nd }}$ Year) (EVEN SEMESTER 2022-23)
 MAY-2023

Course: B.Tech
Semester: IV
Subject: Maths-IV
Subject Code: KAS402
Roll No. \qquad
SECTION-A

1. Attempt all questions. Each questions carry equal marks.

Marks: 5*1=5

Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Find the partial differential equation formed by eliminating arbitrary constants a and b from $\quad z=(x+a)(y+b)$.	L 3	CO
b.	Evaluate $\left(D+4 D^{\prime}+5\right)^{2} z=0$	L 3	CO
c.	Find P.I. of $\left(D^{2}+D D^{\prime}\right) z=\cos (x+y)$	L 3	CO
d.	Show that the P.D.E. $y^{2} u_{x x}-x^{2} u_{y y}=0$ is hyperbolic in the first quadrant.	L 3	CO
e.	Find the general solution of $\frac{\partial z}{\partial \boldsymbol{x}}+\frac{\partial z}{\partial \boldsymbol{y}}=\sin \boldsymbol{x}$	L 3	CO

SECTION-B

Attempt ALL questions. Each questions carry equal marks.
Marks: 3*5=15

Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Solve $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}-2 \frac{\partial^{2} z}{\partial y^{2}}=(y-1) e^{x}$	L3	CO1
or			
a.	Use Cauchy's method of Characteristics to solve $u_{x}+u_{y}=2 x+$ $2 y$, \quad where $u(x, 0)=x^{2}$	L3	CO1
b.	Solve $z=p^{2} x+q^{2} y$	L3	CO1
or			
b.	Solve $D\left(D+D^{\prime}-1\right)\left(D+3 D^{\prime}-2\right) z=x^{2}-4 x y+2 y^{2}$	L3	CO1
c.	Solve $(m z-n y) p+(n x-l z) q=l y-m x$	L3	CO1

SECTION-C

Attempt ALL questions. Each questions carry equal marks.
Marks: 2*5=10

Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Solve $x^{2} r-y^{2} t+x p-y q=\log x$	L3	CO1
b.	Use by the method of separation of variable to solve $4 \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=3 u, u=3 e^{-x}-e^{-5 x}$, when $t=0$.	L3	CO2
OR			
b.	A string is stretched and fastened to two points l apart. Motion is started by displacing the string in the form $y=A \sin \frac{\pi x}{l}$ from which it is released at time $t=0$. Show that the displacement of any point at a distance x from one end at time t is given by $y(x, t)=A \sin \frac{\pi x}{l} \cos \frac{\pi c t}{l}$.	L3	CO 2

