BUDDHA INSTITUTE OF TECHNOLOGY, GIDA, GORAKHPUR

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CT-1 (2nd Year) (EVEN SEMESTER 2022-23)

MAY-2023

Course: B.Tech

Subject: Maths-IV

M.M.

30

Time: 2:00 hrs Subject Code: KAS402

Roll No._____

SECTION-A

1. Attempt all questions. Each questions carry equal marks.		Marks: 5*1=5	
Q. No.	Question	Level of	Course
		Taxonomy	Outcome
а.	Find the partial differential equation formed by eliminating arbitrary constants	L3	CO1
	a and b from $z = (x + a)(y + b)$.		
b.	Evaluate $(D + 4D' + 5)^2 z = 0$	L3	CO1
с.	Find P.I. of $(D^2 + DD')z = \cos(x + y)$	L3	CO1
d.	Show that the P.D.E. $y^2 u_{xx} - x^2 u_{yy} = 0$ is hyperbolic in the first quadrant.	L3	CO2
e.	Find the general solution of $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \sin x$	L3	CO1

SECTION-B

Attempt ALL questions. Each questions carry equal marks.		Marks: 3*5= 15			
Q. No.	Question	Level of Taxonomy	Course Outcome		
a.	Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 2 \frac{\partial^2 z}{\partial y^2} = (y-1)e^x$	L3	CO1		
or					
а.	Use Cauchy's method of Characteristics to solve $u_x + u_y = 2x + 2y$, where $u(x, 0) = x^2$	L3	CO1		
b.	Solve $z = p^2 x + q^2 y$	L3	CO1		
or					
b.	Solve $D(D + D' - 1)(D + 3D' - 2)z = x^2 - 4xy + 2y^2$	L3	CO1		
с.	Solve $(mz - ny)p + (nx - lz)q = ly - mx$	L3	CO1		

SECTION-C

Attempt ALL questions. Each questions carry equal marks.		Marks: 2*5=10			
Q. No.	Question	Level of	Course		
		Taxonomy	Outcome		
a.	Solve $x^2r - y^2t + xp - yq = \log x$	L3	CO1		
b.	Use by the method of separation of variable to solve $4\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 3u$, $u = 3e^{-x} - e^{-5x}$, when $t = 0$.	L3	CO2		
OR					
b.	A string is stretched and fastened to two points l apart. Motion is started by displacing the string in the form $y = A \sin \frac{\pi x}{l}$ from which it is released at time $t = 0$. Show that the displacement of any point at a distance x from one end at time t is given by $y(x, t) = A \sin \frac{\pi x}{l} \cos \frac{\pi ct}{l}$.	L3	CO2		

Semester: IV